
Chapter 15. Text Files

In This Chapter

In this chapter we will review how to work with text files in C#. We will

explain what a stream is, what its purpose is, and how to use it. We will

explain what a text file is and how can you read and write data to a text

file and how to deal with different character encodings. We will

demonstrate and explain the good practices for exception handling when

working with files. All of this will be demonstrated with many examples in this

chapter.

Streams

Streams are an essential part of any input-output library. You can use

streams when your program needs to "read" or "write" data to an external

data source such as files, other PCs, servers etc. It is important to say that

the term input is associated with reading data, whereas the term output is

associated with writing data.

What Is a Stream?

A stream is an ordered sequence of bytes, which is send from one

application or input device to another application or output device. These

bytes are written and read one after the other and always arrive in the same

order as they were sent. Streams are an abstraction of a data

communication channel that connects two devices or applications.

Streams are the primary means of exchanging information in the computer

world. Because of streams, different applications are able to access files on

the computer and are able to establish network communication between

remote computers. In the world of computers, many operations can be

interpreted as reading and writing to a stream. For example, printing is a

process of sending a sequence of bytes to a stream, associated with the

corresponding port, to which is the printer connected. Recreating sounds from

the computer’s sound card can be done by sending some commands, followed

by the sample sound, which is actually a sequence of bytes. The scanning of

documents from a scanner can be done by sending commands to the scanner

(an output stream) and then reading the scanned image (an input stream).

This way, you can work with any peripheral device (camera, mouse,

keyboard, USB stick, soundcard, printer, scanner etc.).

Every time when you read or write from or to a file, you have to open a

stream to the corresponding file, do the reading or writing, and then

616 Fundamentals of Computer Programming with C#

close the stream. There are two types of streams – text streams and

binary streams but this separation has to do with the interpretation of the

sent and received bytes. Sometimes, for convenience, a sequence of bytes

can be treated as text (in a predefined encoding) and is referred to as a text

stream.

Today’s modern web sites cannot do without the so-called streaming, which

represents stream access to bulky multimedia files coming from the Internet.

Streaming audio and video allows files to be played before they are

downloaded locally, making the site more interactive. Streams and media

streaming are different concepts but both use sequences of data.

Basic Things You Need to Know about Streams

Many devices use streams for reading and writing data. Because of

streams, communication between program and file, program and remote

computer, is made easy.

Streams are ordered sequences of bytes. The word “order” is intentionally
left stressed, because it is of great importance to remember that streams are

highly ordered and organized. In no way must you influence the order of the

information flow, because it will render it unusable. If a byte is sent to a

stream earlier than another byte, it will arrive earlier at the other end of the

stream, which is guaranteed by the abstraction "stream".

Streams allow sequential data access. Again, it is important to understand

the meaning of the word sequential. You can manipulate the data only in the

order in which it arrives from the stream. This is closely related to the

previous feature. You cannot take the first, than the eight, third, thirteenth

byte and so on. Streams do not allow random access to their data, only

sequential. You can think of streams as of a linked list that contains bytes, in

which they have a strict order.

Different situations require different types of streams. Some streams are

used with text files, others-with binary files and then there are those that

work with strings. For network communication, you have to use a specific

type of stream. The vast variety of streams can help us in different situations,

but can also trouble us, because we need to be familiar with every type of

stream, before we can use it in our application.

Streams are opened before we can begin working with them and are closed

after they have served their purpose. Closing the stream is very

important and must not be left out, because you risk losing data, damaging

the file, to which the stream is opened, and so on – all of these are very

troublesome scenarios, which must not happen in our programs.

We can say that streams are like pipes that connect two points:

Chapter 15. Text Files 617

From one side we pour data in and from the other data leaks out. The one

who pours data is not concerned of how it is transferred, but can be sure that

what he has poured will come out the same on the other side. Those who use

streams do not care how the data reaches them. They know that if someone

poured something on the other side, it will reach them. Therefore, we can

consider streams as a data transport channel, such as pipes.

Basic Operations with Streams

You can do the following operations with streams: creation / opening,

reading data, writing data, seeking / positioning, closing / disconnecting.

Creation

To create or open a stream means to connect the stream to a data source,

a mechanism for data transfer or another stream. For example, when we have

a file stream, then we pass the file name and the file mode in which it is to be

opened (reading, writing or reading and writing simultaneously).

Reading

Reading means extracting data from the stream. Reading is always

performed sequentially from the current position of the stream. Reading is a

blocking operation, and if the other party has not sent data while we are

trying to read or the sent data has not yet arrived, there may occur a delay –

a few milliseconds to hours, days or greater. For example, when reading from

a network stream data can be slowed down because of the network or the

other party might not have send any data.

Writing

Writing means sending data to the stream in a specific way. The writing

is performed from the current position of the stream. Writing may be a

potentially blocking operation, before the data is sent on its way. For

example, if you send bulk data via a network stream, the operation may be

delayed while the data is traveling over the network.

Positioning

Positioning or seeking in the stream means to move the current position

of the stream. Moving is done according to the current position, where we can

position according to the current position, beginning of the stream, or the end

of the stream. Moving can be done only in streams that support

positioning. For example, file streams typically maintain positioning while

network streams do not.

618 Fundamentals of Computer Programming with C#

Closing

To close or disconnect a stream means to complete the work with the

stream and releases the occupied resources. Closing must take place as

soon as possible after the stream has served its purpose, because a resource

opened by a user, usually cannot be used by other users (including other

programs on the same computer that run parallel to our program).

Streams in .NET – Basic Classes

In .NET Framework classes for working with streams are located in the

namespace System.IO. Let’s focus on their hierarchy, organization and

functionality.

We can distinguish two main types of streams – those who work with binary

data and those who work with text data. Later we will discuss the main

characteristics of these two types.

At the top of the stream hierarchy stands an abstract input-output stream

class. It cannot be instantiated, but defines the basic functionality that all the

other streams have.

There are buffered streams that do not add any extra functionality, but use

a buffer for reading and writing data, which significantly enhances

performance. Buffered streams will not be analyzed in this chapter, as we will

focus on working with text files. You can check with the rich documentation

available on the Internet or a textbook for advanced programming.

Some streams add additional functionality to reading and writing data. For

example, there are streams that compress / decompress data sent to them

and streams that encrypt / decrypt data. These streams are connected to

another stream (such as file or network stream) and add additional processing

to its functionality.

The main classes in the System.IO namespace are Stream (abstract base

class for all streams in .NET Framework), BufferedStream, FileStream,

MemoryStream, GZipStream and NetworkStream. We will discuss in more

details some of them, separating them in their basic feature – the type of

data with which they work.

All streams in C# are similar in one basic thing – it is mandatory to close

them after we have finished working with them. Otherwise we risk damaging

the data in the stream or file that we have opened. This brings us to the first

and basic rule that we should always remember when working with streams:

Always close the streams and files you work with! Leaving an

open stream or file leads to loss of resources and can block

the work of other users or processes in your system.

Chapter 15. Text Files 619

Binary and Text Streams

As we mentioned earlier, we can divide the streams into two large groups

according to the type of data that we deal with – binary streams and text

streams.

Binary Streams

Binary streams, as their name suggests, work with binary (raw) data. You

probably guess that that makes them universal and they can be used to read

information from all sorts of files (images, music and multimedia files, text

files etc.). We will take a brief look over them, because we will currently focus

on working with text files.

The main classes that we use to read and write from and to binary streams

are: FileStream, BinaryReader and BinaryWriter.

The class FileStream provides us with various methods for reading and

writing from a binary file (read / write one byte and a sequence of bytes),

skipping a number of bytes, checking the number of bytes available and, of

course, a method for closing the stream. We can get an object of that class by

calling him his constructor with parameter-a file name.

The class BinaryWriter enables you to write primitive types and binary

values in a specific encoding to a stream. It has one main method –

Writeſ…ƀ, which allows recording of any primitive data types – integers,

characters, Booleans, arrays, strings and more.

BinaryReader allows you to read primitive data types and binary values

recorded using a BinaryWriter. Its main methods allow us to read a

character, an array of characters, integers, floating point, etc. Like the

previous two classes, we can get on object of that class by calling its

constructor.

Text Streams

Text streams are very similar to binary, but only work with text data or

rather a sequence of characters (char) and strings (string). Text streams

are ideal for working with text files. On the other hand, this makes them

unusable when working with any binaries.

The main classes for working with text streams in .NET are TextReader and
TextWriter. They are abstract classes, and they cannot be instantiated.

These classes define the basic functionality for reading and writing for the

classes that inherit them. Their more important methods are:

- ReadLine() – reads one line of text and returns a string.

- ReadToEnd() – reads the entire stream to its end and returns a string.

- Write() – writes a string to the stream.

- WriteLine() – writes one line of text into the stream.

620 Fundamentals of Computer Programming with C#

As you know, the characters in .NET are Unicode characters, but streams

can also work with Unicode and other encodings like the standard

encoding for Cyrillic languages Windows-1251.

The classes, to which we will turn our attention to in this chapter, are

StreamReader and StreamWriter. They directly inherit the TextReader and

TextWriter classes and implement functionality for reading and writing

textual information to and from a file.

To create an object of type StreamReader or StreamWriter, we need a file or

a string, containing the file path. Working with these classes, we can use all of

the methods that we are already familiar with, to work with the console.

Reading and writing to the console is much like reading and writing

respectively with StreamReader and StreamWriter.

Relationship between Text and Binary Streams

When writing text, hidden from us, the class StreamWriter transforms the

text into bytes before recording it at the current position in the file. For this

purpose, it uses the character encoding, which is set during its creation. The

StreamReader class works similarly. It uses StringBuilder internally and

when reading binary data from a file, it converts the received bytes to

text before sending the text back as a result from reading.

Remember that the operating systems have no concept of "text file".

The file is always a sequence of bytes, but whether it is text or binary

depends on the interpretation of these bytes. If we want to look at a file or a

stream as text, we must read and write to it with text streams (StreamReader

or StreamWriter), but if we wish to treat it as binary, we must read and

write with a binary stream (FileStream).

Bear in mind that text streams work with text lines, that is, they interpret

binary data as a sequence of text lines, separated from each other with a

new line separators.

The character for the new line is not the same for different platforms and

operating systems. For UNIX and Linux it is LF (0x0A), for Windows and DOS

it is CR + LF (0x0D + 0x0A), and for Mac OS (up to version 9) it is CR (0x0A).

Reading one line of text from a given file or a stream means reading a

sequence of bytes until reading one of the characters CR or LF and converting

these bytes to text according to the encoding, used by the stream. Similarly,

writing one line of text to a text file or stream means writing the binary

representation of the text (according to the current encoding), followed by the

character (or characters) for a new line for the current operating system

(such as CR + LF).

Reading from a Text File

Text files provide the ideal solution for reading and writing data. If we want to

enter some data automatically (instead by hand), we could read it from a text

Chapter 15. Text Files 621

files. So now, we will take a look at how to read and write text files with the

classes from .NET Framework and the C# language.

StreamReader Class for Reading a Text File

C# provides several ways to read files but not all are easy and intuitive to

use. This is why we will use the StreamReader class. The System.IO.
StreamReader class provides the easiest way to read a text file, as it

resembles reading from the console, which by now you have probably

mastered to perfection.

Having read everything until now, you are probably a bit confused. We

already explained that reading and writing to and from text files is only and

exclusively possible with streams, but StreamReader did not appear anywhere

in the above-mentioned streams and you are not sure whether it is actually a

stream. Indeed, StreamReader is not a stream, but it can work with streams.

It provides the easiest and comprehensive way to read from a text file.

Opening a Text File for Reading

You can simply create a StreamReader from a filename (or full file path),

which greatly eases us and reduces the probability of an error. On its

creation, we can specify the character encoding. Here is an example of how

an object of the class StreamReader can be created:

// Create a StreamReader connected to a file
StreamReader reader = new StreamReader("test.txt");

// Read the file here …

// Close the reader resource after you've finished using it
reader.Close();

The first thing to do, when reading from a text file, is to create a variable of

type StreamReader, which we can associate with a specific file from the file

system on our computer. To do this we need only pass the file path as a

parameter to the constructor. Note that if the file is located in the folder

where the compiled project (subdirectory bin\Debug) is, we can only provide

its filename. Otherwise, we have to provide the full file path or relative path.

The code in the above example that creates an object of type StreamReader

can cause an error. For now, simply pass a path to an existing file, and later

on we will turn to the handling of errors when working with files.

Full and Relative Paths

When working with files we can use full paths (e.g. C:\Temp\example.txt)

or relative paths, to the directory from which the application was started

(e.g. ..\..\example.txt).

622 Fundamentals of Computer Programming with C#

If you use full paths, where you pass the full path to a file, do not forget to

apply escaping of slashes, which is used to separate the folders. In C# you

can do this in two ways – with a double slash or with a quoted string

beginning with @ before the string literal. For example, to enroll the path to

the file "C:\Temp\work\test.txt" in a string we have two options:

string fileName = "C:\\Temp\\work\\test.txt";
string theSamefileName = @"C:\Temp\work\test.txt";

Although the use of relative paths is more difficult because you have to take

into account the directory structure of your project which may change during

the life of the project, it is highly recommended avoiding full paths.

Avoid full file paths and work with relative paths! This makes

your application portable and easy for installation and

maintenance.

Using the full path to a file (e.g. C:\Temp\test.txt) is bad practice because

it makes your application dependent on the environment and also non-

transferable. If you transfer it to another computer, you will need to correct

paths to the files, which it seeks, to work correctly. If you use a relative path

to the current directory (e.g. ..\..\example.txt), your program will be

easily portable.

Remember that when you start the C# program, the current

directory is the one, in which the executable (.exe) file is

located. Most often this is the subdirectory bin\Debug or

bin\Release directory to the root of the project. Therefore, to

open the file example.txt from the root directory of your

Visual Studio project, you should use a relative path

..\..\example.txt.

Universal Relative to Physical Path Resolver

If you want to write a portable application, you might benefit of Nakov’s
universal path resolver: http://www.nakov.com/blog/2009/07/14/universal-

relative-to-physical-path-resolver-for-console-wpf-and-aspnet-apps/. It can

automatically resolve a relative path to full (physical) file path in Web,

desktop, console or other .NET application. For example, if your application

consists of an assembly App.exe and a file logo.gif and these files are

located in the same directory, at runtime you will be able to get the physical

location of logo.gif through the following code:

string logoPath =
 UniversalFilePathResolver.ResolvePath(@"~\logo.gif");

http://www.nakov.com/blog/2009/07/14/universal-relative-to-physical-path-resolver-for-console-wpf-and-aspnet-apps/
http://www.nakov.com/blog/2009/07/14/universal-relative-to-physical-path-resolver-for-console-wpf-and-aspnet-apps/

Chapter 15. Text Files 623

Reading a Text File Line by Line – Example

Now, we have learned how to create StreamReader. We can go further by

trying to do something more complicated: to read the entire text file line

by line and print the read text on to the console. Our advice is to create the

text file in the Debug folder of the project (.\bin\Debug), so that it will be in

the same directory in which your compiled application will be and you will not

have to set the full path to it when opening the file. Let’s see what our file

looks like:

Sample.txt

This is our first line.
This is our second line.
This is our third line.
This is our fourth line.

We have a text file from which to read. Now we must create an object of type

StreamReader to read the file and loop though it line by line:

FileReader.cs

class FileReader
{
 static void Main()
 {
 // Create an instance of StreamReader to read from a file
 StreamReader reader = new StreamReader("Sample.txt");

 int lineNumber = 0;

 // Read first line from the text file
 string line = reader.ReadLine();

 // Read the other lines from the text file
 while (line != null)
 {
 lineNumber++;
 Console.WriteLine("Line {0}: {1}", lineNumber, line);
 line = reader.ReadLine();
 }

 // Close the resource after you've finished using it
 reader.Close();
 }
}

624 Fundamentals of Computer Programming with C#

There is nothing difficult to read text files. The first part of our program is

already well known – create a variable of type StreamReader, to whose

constructor we pass the file’s name, which will be read. The parameter of the

constructor is the path to the file, but since our file is found in the Debug

directory of the project, we set only its name as a path. If our file were

located in the project directory, then we would have submitted the string –

"..\..\Sample.txt" as a path.

After that, we create a variable – counter, whose purpose is to count and

display on which row of the file we are currently located.

Then, we create a variable that will store each read line. With its creation, we

directly read the first line of text file. If the text file is empty, the method

ReadLine() of the StreamReader object will return null.

For the main part – reading the file line by line, we will use a while loop. The

condition for the loop is: as long as there is something in the variable line,

we should continue reading. In the body of the loop, our task is to increase

the value of the counter variable by one and then print the current line in the

format we like. Finally, again we use ReadLine() to read the next line in the

file and write it in the variable line. For printing, we use a method that is

well known to us from the tasks, which required something to be printed on to

the console – WriteLine().

Once we have read everything we need from the file, we should not forget to

close the object StreamReader, as to avoid loss of resources. For this, we use

the method Close().

Always close the StreamReader instances after you finish

working with them. Otherwise you risk losing system

resources. Use the method Close() or the statement using.

The result of the program should look like this:

Line 1: This is our first line.
Line 2: This is our second line.
Line 3: This is our third line.
Line 4: This is our fourth line.

Automatic Closing of the Stream after Working with It

As noted in the previous example, having finished working with the object of

type StreamReader, we called Close() and closed the stream behind the

StreamReader object. Very often, however, novice programmers forget to call

the Close() method, thus blocking the file they use. Also in case of runtime

exception when reading from a file, the file might be left open. This causes

resource leakage and can lead to very unpleasant effects like program

hanging, program misbehavior and strange errors.

Chapter 15. Text Files 625

The correct way to handle the file closing is though the using keyword:

using ſ<stream object>ƀ { … }

The C# construct usingſ…ƀ ensures that after leaving its body, the method

Close() will automatically be called. This will happen even if an exception

occurs when reading the file.

Now let’s rework the previous example to benefit from the using construct:

FileReader.cs

class FileReader
{
 static void Main()
 {
 // Create an instance of StreamReader to read from a file
 StreamReader reader = new StreamReader("Sample.txt");

 using (reader)
 {
 int lineNumber = 0;

 // Read first line from the text file
 string line = reader.ReadLine();

 // Read the other lines from the text file
 while (line != null)
 {
 lineNumber++;
 Console.WriteLine("Line {0}: {1}", lineNumber, line);
 line = reader.ReadLine();
 }
 }
 }
}

Now the code guarantees that once opened successfully, the text file will be

closed correctly regardless of whether reading from it will succeed or fail.

If you are wondering how it is best to take care of closing your program’s

streams and files, follow the following rule:

Always use the using construct in C# in order to properly

close files and streams!

626 Fundamentals of Computer Programming with C#

File Encodings. Reading in Cyrillic

Let’s now consider the problems that occur when reading a file using an

incorrect encoding, such as reading a file in Cyrillic.

Character Encodings

You know that in memory everything is stored in binary form. This means

that it is necessary for text files to be represented digitally, so that they can

be stored in memory, as well as on the hard disk. This process is called

encoding files or more correctly encoding the characters stored in text files.

The encoding process consists of replacing the text characters (letters,

digits, punctuation, etc.) with specific sequences of binary values. You can

imagine this as a large table in which each character corresponds to a certain

value (sequence of bytes).

We already know the concept of character encodings and few character

encoding schemes like UTF-8 and Windows-1251 from the section "Encoding

Schemes" of chapter "Numeral Systems and Data Representation" and also

from the section about "File Encodings in Visual Studio" of chapter "Defining

Classes". Now we will extend this concept a bit and will use character

encodings to work correctly with text files.

Character encodings specify the rules for converting from text to sequence

of bytes and vice versa. An encoding scheme is a table of characters along

with their numbers, but may also contain special rules. For example, the

character "accent" (U + 0300) is special and sticks to the last character that

precedes it. It is encoded as one or more bytes (depending on the character

encoding scheme), and it does not correspond to any character, but to a part

of the character. We will take a look at two encodings that are used most

often when working with Cyrillic: UTF-8 and Windows-1251.

UTF-8 is a universal encoding scheme, which supports all languages and

alphabets in the world. In UTF-8 the most commonly used characters (Latin

alphabet, numerals and special characters) are encoded in one byte, rarely

used Unicode characters (such as Cyrillic, Greek and Arabic) are encoded in

two bytes and all other characters (Chinese, Japanese and many others) are

encoded in 3 or 4 bytes. UTF-8 encoding can convert any Unicode text in

binary form and back and support all of the 100,000 characters of Unicode

standard. UTF-8 encoding is universal and suitable for any language alphabet.

Another commonly used encoding is Windows-1251, which is usually used for

encoding of Cyrillic texts (such as messages sent by e-mail). It contains

256 characters, including the Latin alphabet, Cyrillic alphabet and some

commonly used signs. It uses one byte for each character, but at the expense

of some characters that cannot be stored in it (as the Chinese alphabet

characters), and are lost in an attempt of doing so.

Other examples of encoding schemes (encodings or charsets) are ISO 8859-

1, Windows-1252, UTF-16, KOI8-R, etc. They are used in specific regions of

Chapter 15. Text Files 627

the world and define their own sets of characters and rules for the transition

from text to binary data and vice versa.

For working with encodings (charsets) in .NET Framework, the class

System.Text.Encoding is used, which is created the following way:

Encoding win1251 = Encoding.GetEncoding("Windows-1251");

Reading a Cyrillic Content

You probably already guessed that if we want to read from a file that contains

characters from the Cyrillic alphabet, we must use the correct encoding

that "understands" correctly these special characters. Typically, in a Windows

environment, text files, containing Cyrillic text, are stored in Windows-1251

encoding. To use it, we should set it as the encoding of the stream, which our

StreamReader will process:

Encoding win1251 = Encoding.GetEncoding("Windows-1251");
StreamReader reader = new StreamReader("test.txt", win1251);

If you do not explicitly set the encoding scheme (encoding) for the file read,

in .NET Framework, the default encoding UTF-8 will be used.

You might wonder what happens if you use wrong encoding when reading or

writing a file. There are several scenarios possible:

- If you use read / write only Latin letters, everything will work normally.

- If you write Cyrillic letters, to a files open with encoding, which does not

support the Cyrillic alphabet (e.g. ASCII), Cyrillic letters will be

permanently replaced by the character "?" (question mark).

In any case, these are unpleasant problems, which cannot be immediately

noticed.

To avoid problems with incorrect encoding of files, always

check the encoding explicitly. Otherwise, you may work

incorrectly or break at a later stage.

The Unicode Standard. Reading in Unicode

Unicode is an industry standard that allows computers and other electronic

devices always to present and manipulate text, which was written in most of

the world’s literacies. It consists of over 100,000 characters, as well as

various encoding schemes (encodings). The unification of different characters,

which Unicode offers, leads to its greater distribution. As you know,

characters in C# (types char and string) are also presented in Unicode.

To read characters, stored in Unicode, we must use one of the supported

encoding schemes for this standard. The most popular and widely used is
UTF-8. We can set it as a code scheme with an already familiar way:

628 Fundamentals of Computer Programming with C#

StreamReader reader = new StreamReader("test.txt",
 Encoding.GetEncoding("UTF-8"));

If you are wondering, whether to read a text file, encoded in Cyrillic,

Windows-1251 or UTF-8, then this question has no clear answer. Both

standards are widely used for the recording of non-Latin text. Both encoding

schemes are allowed and can be used. You should only always follow the rule

that a certain files should always be read and written using the same

encoding.

Writing to a Text File

Text files are very convenient for storing various types of information. For

example, we can record the results of a program. We can use text files to

make something like a journal (log) for the program – a convenient way to

monitor it at runtime.

Again, as with reading a text file, we will use a similar to the Console class

when writing, called StreamWriter.

The StreamWriter Class

The class StreamWriter is part of the System.IO namespace and is used

exclusively for working with text data. It resembles the class StreamReader,

but instead of methods for reading, it offers similar methods for writing to a

text file. Unlike other streams, before writing data to the desired destination,

StreamWriter turns it into bytes. StreamWriter enables us to set a preferred

character encoding at the time it is created. We can create an instance of the

class the following way:

StreamWriter writer = new StreamWriter("test.txt");

In the constructor of the class can pass as a parameter a file path, as well as

an existing stream, to which we will write, or an encoding scheme. The

StreamWriter class has several predefined constructors, depending on

whether we will write to a file or a stream. In the examples, we will use the

constructor with the parameter – file path. Example of the usage of the

StreamWriter class constructor with more than one parameter is:

StreamWriter writer = new StreamWriter("test.txt",
 false, Encoding.GetEncoding("Windows-1251"));

In this example, we pass a file path as the first parameter. As a second

parameter, we pass a Boolean variable that indicates whether to overwrite the

file or to append the data at the end of the file. As a third parameter, we pass

an encoding scheme (charset).

Chapter 15. Text Files 629

The example lines of code could trigger an exception, but the handling of

input / output exceptions will be discussed later in this chapter.

Printing the Numbers [1…20] in a Text File – Example

Once we know how to create a StreamWriter class, we will use it as

intended. Our goal is to enroll in a text file the numbers from 1 to 20, each

number on a separate line. We can do this the following way:

class FileWriter
{
 static void Main()
 {
 // Create a StreamWriter instance
 StreamWriter writer = new StreamWriter("numbers.txt");

 // Ensure the writer will be closed when no longer used
 using(writer)
 {
 // Loop through the numbers from 1 to 20 and write them
 for (int i = 1; i <= 20; i++)
 {
 writer.WriteLine(i);
 }
 }
 }
}

We start by creating an instance of StreamWriter in the already well-known

way from the examples.

To list the numbers from 1 to 20 we will use a for-loop. Inside the loop, we

use the method WriteLineſ…ƀ, which again we know from our previous work

with the console, to record the current number on a new line in the file. You

need not worry if a file with the chosen name does not exist. If such the case,

it will automatically be created in the folder of the project and if it already

exists, it will be overwritten (old content will be deleted). The outcome is:

numbers.txt

1
2
3
…
20

630 Fundamentals of Computer Programming with C#

To make sure that after the end of the file it will be closed, we should use the

using construct.

Be sure to close the stream after you finish using it! The best

way to dispose any unused resources is with the using

construct in C#.

When you want to print text in Cyrillic and are unsure what encoding to use,

prefer the UTF-8 encoding. It is universal and not only supports Cyrillic, but

all widespread international alphabets: Greek, Arabic, Chinese, Japanese, etc.

Input / Output Exception Handling

If you have followed the examples so far, you have probably noticed that

many of the operations, related to files, can cause exceptional situations. The

basic principles and approaches for their capture and processing are already

familiar to you from the chapter "Handling Exceptions". Now we will

concentrate on the specific errors when working with files and best

practices for their handling.

Intercepting Exceptions when Working with Files

Perhaps the most common exception when working with files is the

FileNotFoundException (its name infers that the desired file was not found).

It can occur when creating StreamReader.

When setting a specified encoding by the creation of a StreamReader or a

StreamWriter object, an ArgumentException can be thrown. This means,

that the encoding we have chosen is not supported.

Another common mistake is IOException. This is the base class for all IO

errors when working with streams.

The standard approach for handling exceptions when working with files is the

following: declare variables of class StreamReader or StreamWriter in try-
catch block. Initialize them with the necessary values in the block and handle

the potential exceptions properly. To close the stream, we use the structure

using. To illustrate what we just said, will give an example.

Catching an Exception when Opening a File – Example

Here’s how we can catch exceptions that occur when working with files:

class HandlingExceptions
{
 static void Main()
 {
 string fileName = @"somedir\somefile.txt";
 try

Chapter 15. Text Files 631

 {
 StreamReader reader = new StreamReader(fileName);
 Console.WriteLine(
 "File {0} successfully opened.", fileName);
 Console.WriteLine("File contents:");
 using (reader)
 {
 Console.WriteLine(reader.ReadToEnd());
 }
 }
 catch (FileNotFoundException)
 {
 Console.Error.WriteLine(
 "Can not find file {0}.", fileName);
 }
 catch (DirectoryNotFoundException)
 {
 Console.Error.WriteLine(
 "Invalid directory in the file path.");
 }
 catch (IOException)
 {
 Console.Error.WriteLine(
 "Can not open the file {0}", fileName);
 }
 }
}

The example demonstrates reading a file and printing its contents to the

console. If we accidentally have confused the name of the file or have deleted

it, an exception of type FileNotFoundException will be thrown. In the catch

block we intercept this sort of exception and if such occurs, we will process it

properly and print a message to the console, saying that this file cannot be

found. The same will happen if there were no directory named "somedir".

Finally, for better security, we have also added a catch block for
IOExceptions. There all other IO exceptions, that might occur when working

with files, will be intercepted.

Text Files – More Examples

We hope the theoretical explanations and examples so far have helped you

get into the subtleties when working with text files. Now we will take a look at

some more complex examples, so as to review the gained knowledge and

to illustrate how to use them in solving practical problems.

632 Fundamentals of Computer Programming with C#

Occurrences of a Substring in a File – Example

Here is how to implement a simple program that counts how many times a

substring occurs in a text file. In the example, let’s look for the substring "C#"

in a text file as follows:

sample.txt

This is our "Intro to Programming in C#" book.
In it you will learn the basics of C# programming.
You will find out how nice C# is.

We can implement the counting as follows: will read the file line by line and

each time we meet the desired word inside the last read line, we will increase

the value of a variable (counter). We will process the possible exceptional

situations to enable users to receive adequate information in case of errors.

Here is a sample implementation:

CountingWordOccurrences.cs

static void Main()
{
 string fileName = @"..\..\sample.txt";
 string word = "C#";
 try
 {
 StreamReader reader = new StreamReader(fileName);
 using (reader)
 {
 int occurrences = 0;
 string line = reader.ReadLine();
 while (line != null)
 {
 int index = line.IndexOf(word);
 while (index != -1)
 {
 occurrences++;
 index = line.IndexOf(word, (index + 1));
 }
 line = reader.ReadLine();
 }
 Console.WriteLine(
 "The word {0} occurs {1} times.", word, occurrences);
 }
 }
 catch (FileNotFoundException)

Chapter 15. Text Files 633

 {
 Console.Error.WriteLine(
 "Can not find file {0}.", fileName);
 }
 catch (IOException)
 {
 Console.Error.WriteLine(
 "Cannot read the file {0}.", fileName);
 }
}

For simplicity of the example, the word we seek is hardcoded. You can

implement the program to search a word entered by the user.

You can see that the example is not very different from the previous ones. We

initialize the variables outside of the try-catch block. Again, we use a while-

loop to read the lines of the text file one by one. Inside its body, there is

another while-loop, which counts how many times the searched word occurs

in the given line, and then increases the number of occurrences. This is done

using the method IndexOfſ…) of the class String (remember what it does in

case you have forgotten). We do not forget to ensure the closing of the

StreamReader object using the using structure. All that remains is to print

the results on to the console.

For our example, the result is the following:

The word C# occurs 3 times.

Editing a Subtitles File – Example

Now we will look at a more complex example, in which we at the same time

read from a file and record to another. This program fixes a subtitles file

for a movie.

Our goal will be to read a file with subtitles, that are incorrect and do not

appear at the right time, and to shift the times in an appropriate manner, so

that they can appear correctly. One such file generally contains the time of

the on-screen duration and the text, that should appear in the defined time

interval. Here is how typical subtitles files look like:

GORA.sub

{1029}{1122}{Y:i}Captain, systems are|at the ready.
{1123}{1270}{Y:i}The preassure is stable.|Prepare for landing.
{1343}{1468}{Y:i}Please,fasten your seatbelts|and take your
places.
{1509}{1610}{Y:i}Coordinates 5.6|- Five, Five, Six, dot com.

634 Fundamentals of Computer Programming with C#

{1632}{1718}{Y:i}Where did the coordinates|go to?
{1756}{1820}Commander Logar,|everyone is speaking in English.
{1821}{1938}Can't we switch|to Turkish from the beginning?
{1942}{1992}Yes, we can!
{3104}{3228}{Y:b}G.O.R.A.|a movie about the cosmos
…

StarWars.sub

{1029}{1122}{Y:i}I'll never join you.
{1123}{1270}{Y:i}If you only knew | the power of the dark side.
{1343}{1468}{Y:i}Obi One never told you what happened to your
father!
{1509}{1610}{Y:i}He told me enough! | He told me you killed him.
{1632}{1718}{Y:i}No... I am your father!
{1756}{1820}(dramatic music playing)...
{1821}{1938}No, no that's not true... | That's impossible!
{1942}{1992}Search your feelings,| you know it's true.
{3104}{3228}{Y:b}Nooo…
…

To fix the subtitles, we usually just need to make an adjustment in the time

for displaying the subtitles. Such an adjustment may be offsetting the start /

end time for each subtitle (by addition or subtraction of a constant) or

changing the speed (multiplying by a factor, say 1.05).

Here is sample code that can implement such a program:

FixingSubtitles.cs

using System;
using System.IO;

class FixingSubtitles
{
 const double COEFFICIENT = 1.05;
 const int ADDITION = 5000;
 const string INPUT_FILE = @"..\..\source.sub";
 const string OUTPUT_FILE = @"..\..\fixed.sub";

 static void Main()
 {
 try
 {

Chapter 15. Text Files 635

 // Create reader
 StreamReader streamReader = new StreamReader(INPUT_FILE);

 // Create writer
 StreamWriter streamWriter =
 new StreamWriter(OUTPUT_FILE, false);

 using (streamReader)
 {
 using (streamWriter)
 {
 string line;
 while ((line = streamReader.ReadLine()) != null)
 {
 streamWriter.WriteLine(FixLine(line));
 }
 }
 }
 }
 catch (IOException exc)
 {
 Console.WriteLine("Error: {0}.", exc.Message);
 }
 }

 static string FixLine(string line)
 {
 // Find closing brace
 int bracketFromIndex = line.IndexOf('}');

 // Extract 'from' time
 string fromTime = line.Substring(1, bracketFromIndex - 1);

 // Calculate new 'from' time
 int newFromTime = (int) (Convert.ToInt32(fromTime) *
 COEFFICIENT + ADDITION);

 // Find the following closing brace
 int bracketToIndex = line.IndexOf('}',
 bracketFromIndex + 1);

 // Extract 'to' time
 string toTime = line.Substring(bracketFromIndex + 2,
 bracketToIndex - bracketFromIndex - 2);

636 Fundamentals of Computer Programming with C#

 // Calculate new 'to' time
 int newToTime = (int) (Convert.ToInt32(toTime) *
 COEFFICIENT + ADDITION);

 // Create a new line using the new 'from' and 'to' times
 string fixedLine = "{" + newFromTime + "}" + "{" +
 newToTime + "}" + line.Substring(bracketToIndex + 1);

 return fixedLine;
 }
}

Again, we use the already familiar method for reading a file line by line.

The difference this time is, that in the body of the loop, we write every line of

the file with already corrected subtitles, after we have fixed them with the

method FixLine(string) (this method is not the subject of our discussion,

since it can be implemented in many different ways depending on what you

want to adjust). Because we use the using block for both files, we can

guarantee that they will be closed even if an exception occurs during

processing (this may happen, for example if one of the lines in the file is not

in the expected format).

Exercises

1. Write a program that reads a text file and prints its odd lines on the

console.

2. Write a program that joins two text files and records the results in a

third file.

3. Write a program that reads the contents of a text file and inserts the

line numbers at the beginning of each line, then rewrites the file

contents.

4. Write a program that compares two text files with the same number of

rows line by line and prints the number of equal and the number of

different lines.

5. Write a program that reads a square matrix of integers from a file and

finds the sub-matrix with size 2 × 2 that has the maximal sum and

writes this sum to a separate text file. The first line of input file contains

the size of the recorded matrix (N). The next N lines contain N integers

separated by spaces.

Sample input file:

4
2 3 3 4

Chapter 15. Text Files 637

0 2 3 4
3 7 1 2
4 3 3 2

Sample output: 17.

6. Write a program that reads a list of names from a text file, arranges

them in alphabetical order, and writes them to another file. The lines

are written one per row.

7. Write a program that replaces every occurrence of the substring

"start" with "finish" in a text file. Can you rewrite the program to

replace whole words only? Does the program work for large files (e.g. 800

MB)?

8. Write the previous program so that it changes only the whole words

(not parts of the word).

9. Write a program that deletes all the odd lines of a text file.

10. Write a program that extracts from an XML file the text only (without the

tags). Sample input file:

<?xml version="1.0"><student><name>Peter</name>
<age>21</age><interests count="3"><interest>
Games</interest><interest>C#</interest><interest>
Java</interest></interests></student>

Sample output:

Peter
21
Games
C#
Java

11. Write a program that deletes all words that begin with the word "test".

The words will contain only the following chars: 0…9, a…z, A…Z.

12. A text file words.txt is given, containing a list of words, one per line.

Write a program that deletes in the file text.txt all the words that

occur in the other file. Catch and handle all possible exceptions.

13. Write a program that reads a list of words from a file called words.txt,

counts how many times each of these words is found in another

file text.txt, and records the results in a third file – result.txt, but

before that, sorts them by the number of occurrences in descending

order. Handle all possible exceptions.

638 Fundamentals of Computer Programming with C#

Solutions and Guidelines

1. Use the examples discussed in this chapter. Use the using structure to

ensure proper closing of the input and the resulting stream.

2. You will have to first read the input file line by line and save it in the

resulting file in overwrite mode. Then you must open the second input

file and save it line by line in the result file in append mode. To create a

StreamWriter in overwrite / use mode use the appropriate constructor

(find it in MSDN).

An alternative way is to read both files in a string with ReadToEnd(),

store them in memory and save them in the resulting file. This approach

does not work for large files (the likes of several gigabytes).

3. Follow the examples in this chapter. Think of how you would solve the

task if the file were large (several gigabytes).

4. Follow the examples in this chapter. You will have to open both files

simultaneously and read them line by line in a loop. If you reach the end

of the (read null) file, that does not match the other’s, that means that

both files have different number of rows and an exception should be

thrown.

5. Read the first line of the file and create a matrix with the specified size.

After that read the following lines, line by line and separate the numbers.

Then save them in the corresponding (row, column) in the matrix. Finally,

find the sub-matrix using two nested loops.

6. Write each read name in a list (List<string>), then sort it properly (look

for information on the method Sort()) and then print it in the result file.

7. Read the file line by line and use the methods of the class String. If you

load the entire file into memory, instead of reading it line by line,

problems when loading large files might occur.

8. For every occurrence of “start”, check if that is the whole word or just a
part of it.

9. Look at the examples in this chapter.

10. Read the input file character by character. When you encounter a "<",

then this is a starting tag, but when you encounter a ">", that means a

closing tag. All characters you encounter outside of the tags build up the

text that must be extracted. You can store it in StringBuilder and print

its contents when you encounter "<" or reach the end of the file.

11. Read the file line by line and replace words that start with "test" with

an empty string. Use Regex.Replaceſ…ƀ with an appropriate regular

expression. Alternatively, you can search in the line the substring "test"

and every time you find it, get all of its neighboring letters to the left and

right. This way you find the word in which the string "test" is part of and

you can delete it if it begins with "test".

Chapter 15. Text Files 639

12. The task is similar to the previous one. You can read the text line by

line and replace each of the given words with an empty string. Test

whether your program properly handles exceptions by simulating different

scenarios (e.g. no file, lack of rights for reading and writing, etc.).

13. Create a hash table with keys – the words from words.txt and

value number of occurrences of each word (Dictionary<string,

int>). Firstly, save to the hash table that all words are found 0 times.

Then read the file line by line and split each line into words. Check

whether each obtained word can be found in the hash table, and if so,

add 1 to the number of occurrences. Finally, save all the words and their

number of occurrences in an array of type KeyValuePair<string, int>.

Sort the array with a suitable comparison function like so:

Array.Sort<KeyValuePair<string, int>>(
 arr, (a, b) => a.Value.CompareTo(b.Value));

